Practical Aspects of Measuring Humidity in Commercial Buildings

LEW HARRIMAN

Mason-Grant Consulting • Portsmouth, NH

www.MasonGrant.com

Key Issues (For Commercial Installations)

- The sensor's operating principle and it's "Factory Accuracy" are usually less important than:
- Site-dependent variables
 - Economic & health consequences of accurate measurement
 - Location which most needs controlled humidity
 - Cycling range, speed and frequency (Sensor placement)
 - Contaminant load
 - Frequency of calibration
- Sensor characteristics
 - Installed and field-calibrated cost
 - Cost and ease of recalibration (in-place)
 - Repeatability
 - Response time

Health & Economic Consequences

- Most humidity-related health consequences are caused by condensation, and require long-term exposure to at-risk population: Hospitals & Nursing Homes
- "Soft" economic consequences = No-choice occupancies:
 Schools, Office Buildings
- "Less-soft" consequences = Patron-choice occupancies:
 Restaurants, Retail Clothing
- "Hard" economic consequences = Energy cost for humidity control
 - Museums
 - Hospitals
 - Supermarkets
 - Ice arenas

The Location That Needs Control

- Copier room vs. patient rooms
 - High temperature means low rh copier room does not reflect the rh in patients' rooms
- Ice arena wall vs. ice surface
 - Ice needs constant dew point, wall rh varies widely with temperature
- Supply air duct vs. inside the museum
 - Artifacts need constant rh, but local heat loads cause rh fluctuations

Cycling Range, Speed & Frequency

- Incoming outdoor air vs. return air
 - Outdoors 10 to 100% rh , frequent condensation
 - Return air 20 to 60% rh, no condensation
- Inside wall vs. near the door
 - Internal wall temp more stable
 - Door openings lead to fast changes
- Near humidifier or dehumidifier
 - Fast changes, wide range as components turn on and off

Contaminant Load

- Outdoor air vs. indoor air
 - Outdoor air carries much particulate and gaseous contamination
- Upstream vs. downstream of filters
- Near pollutant source
 - Kitchen wall pass-though
 - Above heated therapy pool

Frequency of Calibration

- Does the sensor report the correct humidity?
 - Now vs. at the factory
 - Now vs. six years ago after installation
- Can it actually be calibrated at all?
 - Does the sensor allow adjustment?
 - Can the sensor be reached by a technician?
 - The reality of people
 - Anybody assigned to it?
 - Do they know they are assigned?
 - Do they know how to calibrate?
 - Do they actually do it? How often?

Summary: Tough vs. Easy Measurements

- Tough (Expensive to do accurately)
 - Outdoor air
 - RH above 80% or below 20%
 - Supply air RH
 - More accurate than ± 2% RH
- Easier (Less expensive to do accurately)
 - Indoor air away from heat sources
 - RH between 40 and 60%
 - Return air
 - ± 5% RH or wider (between 40 and 60%)
- Out of the Question
 - Accurate measurement without a calibrated sensor
 - Accurate measurement without regular recalibration